Genome-Based Comparison of Clostridioides difficile : Average Amino Acid Identity Analysis of Core Genomes

By | Publications | No Comments

Adriana Cabal, Se-Ran Jun, Piroon Jenjaroenpun, Visanu Wanchai, Intawat Nookaew, Thidathip Wongsurawat, Mary J. Burgess, Atul Kothari, Trudy M. Wassenaar1, David W. Ussery

Received: 30 August 2017 /Accepted: 2 February 2018 # The Author(s) 2018. This article is an open access publication

Abstract

Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identification of CDI and can assist in characterization of the most probable causative strain in CDI patients.

Keywords C. difficile, AAI .MLST, Community-acquired infections, Comparative genomics

Read the publication here: http://rdcu.be/GWYD

Interspecific plant interactions reflected in soil bacterial community structure and nitrogen cycling in primary succession.

By | Publications | No Comments

Front. Microbiology, in the press, January 2018  | doi: 10.3389/fmicb.2018.00128
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00128/abstract

Joseph E. Knelman, Emily B. Graham, Janet S. Prevéy, Michael S. Robeson, Patrick Kelly, Eran Hood and Steve K. Schmidt

Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study we sought to examine how emblematic shifts from early-successional Alnus sinuata (alder) to late successional Picea sitchensis (spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early-successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. In total, we show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce-specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

[boot_button text=”Read more” title=”Read more” url=”https://www.frontiersin.org/articles/10.3389/fmicb.2018.00128/abstract” type=”btn-primary” /]